RISOLUZIONE ESERCIZI COMPITO 17 FEBBRAIO 2017

Domanda 1 - compito A

L'analisi elementare di un composto organico ha dato la seguente composizione percentuale in massa: C, 40.0%; H, 6.70%; O, 53.3%. Sapendo che 20.3 g del composto, sciolti in 750 g d'acqua, determinano una temperatura di congelamento della soluzione pari a -0.280°C, determinare la formula molecolare del composto. Per l'acqua, k_c = 1.86. Il soluto si scioglie in acqua senza dissociazione.

Svolgimento

La prima serie di dati consente di ricavare la formula minima del composto. Assumendo di avere 100 g di composto, le moli relative degli elementi sono: C: $40.0 \text{ g}/12.01115 \text{ g mol}^{-1} = 3.33$; H: $6.70 \text{ g}/1.00797 \text{ g mol}^{-1} = 6.65$; O: $53.3 \text{ g}/15.9994 \text{ g mol}^{-1} = 3.33$. La formula minima è pertanto $C_{3.33}H_{6.65}O_{3.33}$, ovvero CH_2O .

Dalla seconda serie di dati trovo la massa molare del composto. Dalla formula dell'abbassamento crioscopico $\Delta T = k_c m$, valida per soluti indissociati, trovo la molalità della soluzione = 0.280/1.86 = 0.150. Moltiplico per i Kg di solvente e trovo le moli di soluto: $0.150 \times 0.750 = 0.113$. Infine, dalla proporzione $20.3 \text{ g} : 0.113 \text{ moli} = \text{x} : 1 \text{ trovo i grammi corrispondenti a una mole, ovvero la massa molare = <math>180 \text{ g/mol}$.

Poiché la massa molare della formula minima è pari a 30, e poiché 180/30 = 6, ne consegue che la formula molecolare contiene 6 volte la formula minima, per cui sarà uguale a $C_6H_{12}O_6$.

Domanda 1 - compito B

L'analisi elementare di un composto organico ha dato la seguente composizione percentuale in massa: C, 39.1%; H, 8.70%; O, 52.2%. Sapendo che la soluzione ottenuta sciogliendo $3.60 \times 10^{-2} \, \mathrm{g}$ del composto in 500 mL di soluzione presenta una pressione osmotica di 14.5 Torr a 25.0°C, determinare la formula molecolare del composto. Il soluto si scioglie in acqua senza dissociazione.

Svolgimento

La prima serie di dati consente di ricavare la formula minima del composto. Assumendo di avere 100 g di composto, le moli relative degli elementi sono: C: $39.1 \text{ g}/12.01115 \text{ g mol}^{-1} = 3.25$; H: $8.70 \text{ g}/1.00797 \text{ g mol}^{-1} = 8.63$; O: $52.2 \text{ g}/15.9994 \text{ g mol}^{-1} = 3.26$. La formula minima è pertanto $C_{3.25}H_{8.63}O_{3.25}$, ovvero $C_3H_8O_3$.

Dalla seconda serie di dati trovo la massa molare del composto. Dalla formula della pressione osmotica $\Pi V = nRT$, valida per soluti indissociati, trovo le moli di soluto: $n = ((14.5/760)*0.500)/(0.08206*298) = 3.90 \times 10^{-4}$. Infine, dalla proporzione 3.60×10^{-2} g : 3.90×10^{-4} moli = x : 1 trovo i grammi corrispondenti a una mole, ovvero la massa molare = 92.3 g/mol.

Poiché la massa molare della formula minima è pari a 92, e poiché 92.3/92 = 1, ne consegue che la formula molecolare coincide con la formula minima.

Domanda 1 - compito C

L'analisi elementare di un composto organico ha dato la seguente composizione percentuale in massa: C, 38.7%; H, 9.68%; O, 51.62%. Sapendo che 59.0 g del composto, sciolti in 1500 g d'acqua, determinano una temperatura di ebollizione della soluzione pari a 100.325° C, determinare la formula molecolare del composto. Per l'acqua, $k_e = 0.512$. Il soluto si scioglie in acqua senza dissociazione.

Svolgimento

La prima serie di dati consente di ricavare la formula minima del composto. Assumendo di avere 100 g di composto, le moli relative degli elementi sono: C: $38.7 \text{ g}/12.01115 \text{ g mol}^{-1} = 3.22$; H: $9.68 \text{ g}/1.00797 \text{ g mol}^{-1} = 9.60$; O: $51.62 \text{ g}/15.9994 \text{ g mol}^{-1} = 3.23$. La formula minima è pertanto $C_{3.22}H_{9.60}O_{3.23}$, ovvero CH_3O .

Dalla seconda serie di dati trovo la massa molare del composto. Dalla formula dell'innalzamento ebullioscopico $\Delta T = k_e m$, valida per soluti indissociati, trovo la molalità della soluzione = 0.325/0.512 = 0.635. Moltiplico per i Kg di solvente e trovo le moli di soluto: 0.635 x 1.500 = 0.952. Infine, dalla proporzione 59.0 g : 0.952 moli = x : 1 trovo i grammi corrispondenti a una mole, ovvero la massa molare = 62.0 g/mol.

Poiché la massa molare della formula minima è pari a 31, e poiché 62/31 = 2, ne consegue che la formula molecolare contiene 2 volte la formula minima, per cui sarà uguale a $C_2H_6O_2$.

Domanda 2 - compito A

Calcolare la quantità in grammi di ipoclorito di sodio che occorre disciogliere in 750 mL di soluzione per avere pH = 8.850. Per HClO, $K_a = 2.95 \times 10^{-8}$.

<u>Svolgimento</u>

Si tratta di una soluzione di un sale che dà idrolisi basica, essendo costituito da Na⁺ (ininfluente sul pH) e dall'anione ipoclorito, base coniugata dell'acido debole acido ipocloroso. Dal pH della soluzione ricavo la concentrazione di OH⁻ all'equilibrio: $[H_3O^+] = 10^{-pH} = 1.41 \times 10^{-9}$, per cui $[OH^-] = 7.09 \times 10^{-6}$. Considero l'equilibrio:

ClO- +
$$H_2O$$
 \leftrightarrows HClO + OH-

I x 0 0

V -7.09 x 10-6 +7.09 x 10-6 +7.09 x 10-6

E x - 7.09 x 10-6 7.09 x 10-6

Per cui:

$$K_b = K_w/K_a = 3.39 \times 10^{-7} = (7.09 \times 10^{-6})^2/(x - 7.09 \times 10^{-6})$$

Risolvo e trovo x = 1.55×10^{-4} M. Le moli di NaClO da disciogliere sono pertanto 1.55×10^{-4} mol/L x 0.750 L = 1.17×10^{-4} . Moltiplico per la MM(NaClO) e trovo i grammi: 1.17×10^{-4} mol x 74.4422 g/mol = 8.71×10^{-3} g.

Domanda 2 - compito B

Calcolare la quantità in grammi di fluoruro di sodio che occorre disciogliere in 850 mL di soluzione per avere pH = 8.400. Per HF, $K_a = 3.53 \times 10^{-4}$.

Svolgimento

Si tratta di una soluzione di un sale che dà idrolisi basica, essendo costituito da Na⁺ (ininfluente sul pH) e dall'anione fluoruro, base coniugata dell'acido debole acido fluoridrico. Dal pH della soluzione ricavo la concentrazione di OH⁻ all'equilibrio: $[H_3O^+] = 10^{-pH} = 3.98 \times 10^{-9}$, per cui $[OH^-] = 2.51 \times 10^{-6}$. Considero l'equilibrio:

Per cui:

$$K_b = K_w/K_a = 2.83 \text{ x } 10^{-11} = (2.51 \text{ x } 10^{-6})^2/(\text{x - } 2.51 \text{ x } 10^{-6})$$

Risolvo e trovo x = 2.23×10^{-1} M. Le moli di NaF da disciogliere sono pertanto 2.23×10^{-1} mol/L x 0.850 L = 1.89×10^{-1} . Moltiplico per la MM(NaF) e trovo i grammi: 1.89×10^{-1} mol x 41.9882 g/mol = 7.94 g.

Domanda 2 - compito C

Calcolare la quantità in grammi di nitrito di potassio che occorre disciogliere in 250 mL di soluzione per ottenere una soluzione a pH = 7.650. Per HNO₂, $K_a = 4.6 \times 10^{-4}$.

<u>Svolgimento</u>

Si tratta di una soluzione di un sale che dà idrolisi basica, essendo costituito da K+ (ininfluente sul pH) e dall'anione nitrito, base coniugata dell'acido debole acido nitroso. Dal pH della soluzione ricavo la concentrazione di OH- all'equilibrio: $[H_3O^+] = 10^{-pH} = 2.24 \times 10^{-8}$, per cui $[OH^-] = 4.46 \times 10^{-7}$. Considero l'equilibrio:

$$NO_{2}^{-}$$
 + $H_{2}O$ \leftrightarrows HNO_{2} + OH^{-}

I x 0 0

V -4.46×10^{-7} $+4.46 \times 10^{-7}$

Per cui:

$$K_b = K_w/K_a = 2.17 \times 10^{-11} = (4.46 \times 10^{-7})^2/(x - 4.46 \times 10^{-7})$$

Risolvo e trovo x = 9.17×10^{-3} M. Le moli di KNO₂ da disciogliere sono pertanto 9.17×10^{-3} mol/L x 0.250 L = 2.29×10^{-3} . Moltiplico per la MM(KNO₂) e trovo i grammi: 2.29×10^{-3} mol x 85.1075 g/mol = 0.195 g.

Domanda 3 - compito A

Calcolare la solubilità, in grammi/litro, del solfato di argento in a) acqua pura, e in b) soluzione 0.250 M di nitrato di argento. Per Ag₂SO₄, K_{ps} = 1.6 x 10⁻⁵.

Svolgimento

Dato l'equilibrio eterogeneo: $Ag_2SO_4(s) \leftrightarrows 2Ag^+(aq) + SO_4^{2-}(aq)$, definendo come 's' la solubilità molare del sale, ho:

- a) $K_{ps} = [Ag^+]^2[SO_4^{2-}] = (2s)^2s = 4s^3$ da cui $s = 1.6 \times 10^{-2}$ M. Ne consegue che $s(g/L) = s(mol/L) \times MM(Ag_2SO_4) = 4.99$ g/L.
- b) $K_{ps} = [Ag^+]^2[SO_4^{2-}] = (2s+0.250)^2s$ trascuro 2s nella somma: $K_{ps} = 0.0625s$ da cui $s = 2.6 \times 10^{-4}$ M. Ne consegue che $s(g/L) = s(mol/L) \times MM(Ag_2SO_4) = 7.98 \times 10^{-2} \text{ g/L}$.

Domanda 3 - compito B

Calcolare la solubilità, in grammi/litro, del fluoruro di magnesio in a) acqua pura, e in b) soluzione 0.0500 M di cloruro di magnesio. Per MgF₂, $K_{ps} = 6.4 \times 10^{-9}$.

Svolgimento

Dato l'equilibrio eterogeneo: $MgF_2(s) \leftrightarrows Mg^{2+}(aq) + 2F^{-}(aq)$, definendo come 's' la solubilità molare del sale, ho:

- a) $K_{ps} = [Mg^{2+}][F^{-}]^2 = s(2s)^2 = 4s^3$ da cui $s = 1.2 \times 10^{-3} \text{ M}$. Ne consegue che $s(g/L) = s(mol/L) \times MM(MgF_2) = 7.48 \times 10^{-2} \text{ g/L}$.
- b) $K_{ps} = [Mg^{2+}][F^{-}]^2 = (s+0.0500)(2s)^2$ trascuro s nella somma: $K_{ps} = 0.200$ s² da cui s = 1.8 x 10⁻⁴ M. Ne consegue che s(g/L) = s(mol/L) x MM(MgF₂) = 1.1 x 10⁻² g/L.

Domanda 3 - compito C

Calcolare la solubilità, in grammi/litro, del bromuro di mercurio (II) in a) acqua pura, e in b) soluzione 0.4500 M di bromuro di potassio. Per HgBr₂, K_{ps} = 1.3 x 10⁻²¹.

Svolgimento

Dato l'equilibrio eterogeneo: $HgBr_2(s) \leftrightarrows Hg^{2+}(aq) + 2Br^{-}(aq)$, definendo come 's' la solubilità molare del sale, ho:

- a) $K_{ps} = [Hg^{2+}][Br^{-}]^2 = s(2s)^2 = 4s^3$ $s = 6.9 \times 10^{-8} M$. da cui $s(g/L) = s(mol/L) \times MM(HgBr_2) = 2.5 \times 10^{-5} g/L$.
- b) $K_{ps} = [Mg^{2+}][F^{-}]^2 = (s)(2s+0.4500)^2$ trascuro 2s nella somma: $K_{ps} = 0.2025$ s da cui $s = 6.4 \times 10^{-21}$ M. Ne consegue che $s(g/L) = s(mol/L) \times MM(HgBr_2) = 2.3 \times 10^{-18}$ g/L.